Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We measured the production cross sections and momentum distributions of proton-rich radioactive isotopes (RIs) whose atomic numbers were 18–37. These isotopes were produced by the projectile fragmentation of a 345-MeV/nucleon $$^{78}$$Kr beam impinged on a 5-mm Be target. The cross sections close to the stability region were reproduced fairly well by the semi-empirical formulas, EPAX3.1a and FRACS1.1. However, these formulas tend to overestimate the cross sections of the RIs near the proton drip line, sometimes by as much as 100-fold. The Abrasion–Ablation model in the LISE$$^{++}$$ package was employed, using different mass table variations, to describe the experimental results in this region. The best agreement was achieved when the Weizsäcker-Skyrme microscopic-macroscopic mass formula (WS4$$_{\mathrm{RBF}}$$) and a version of the nonrelativistic Hartree–Fock–Bogoliubov mass model (HFB22) were used. The momentum distribution was represented well by an asymmetric Gaussian distribution. The width of the high-momentum side of the distribution was reproduced fairly well by the Goldhaber model, whereas the width of the low-momentum side was 1.1 times larger than that of the high-momentum side. Moreover, an exponential-shaped low-momentum tail was observed, which began from a height of approximately 1/100–1/1000 of the momentum peak. The momentum means were not reproduced well by Morrissey’s empirical formula: additional velocity loss to the formula was observed. The yield of $$^{68}$$Br was smaller than the expected yield, as estimated from the yield systematics of its neighboring RIs. Assuming an in-flight decay in the separator, the half-life of $$^{68}$$Br was estimated to be $$105^{+62}_{-25}$$ ns.more » « less
-
Properties of the nuclear equation of state (EoS) can be probed by measuring the dynamical properties of nucleus-nucleus collisions. In this study, we present the directed flow (v1), elliptic flow (v2) and stopping (VarXZ) measured in fixed target Sn+ Sn collisions at 270AMeV with the S'll'RlT Time Projection Chamber. We perform Bayesian analyses in which EoS parameters are varied simultaneously within the Improved Quantum Molecular Dynamics-Skyrme (ImQMD-Sky) transport code to obtain a multivariate correlated constraint. The varied parameters include symmetry energy, S0, and slope of the symmetry energy, L, at saturation density, isoscalar effective mass, m;/mN, isovector effective mass, m/mN and the in-medium cross-section enhancement factor rJ. We find that the flow and VarXZ observables are sensitive to the splitting of proton and neutron effective masses and the in-medium cross-section. Comparisons of ImQMD-Sky predictions to the S'll' RJT data suggest a narrow range of preferred values for m;/mN, m/mN and 1/·more » « less
-
Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates.more » « less
-
Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV.more » « less
-
Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses and (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— and , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130M⊙should be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200M⊙form through gravitational-wave-driven mergers.more » « less
An official website of the United States government
